Segmento somma e segmento differenza

Cosa si intende per segmento somma? E per segmento differenza?

Quando si devono svolgere dei problemi con i segmenti, quelli in cui viene chiesto di determinare il segmento somma e il segmento differenza probabilmente sono i più semplici, ma non per questo vanno sottovalutati.

Partiamo definendo due segmenti iniziali, AB e CD:

Segmento somma

Per determinare il segmento somma dei segmenti AB e CD è possibile utilizzare:

  • il metodo grafico, che prevede di disegnare i segmenti AB e CD in modo adiacente, facendo corrispondere il secondo punto del primo segmento con il primo punto del secondo segmento, misurando poi la lunghezza del segmento finale;
  • il metodo analitico, che prevede – semplicemente – di sommare il valore delle misure dei due segmenti AB e CD.

Applichiamo il metodo grafico, rappresentando il segmento che si crea unendo i due segmenti iniziali AB e CD (adiacenti):

Il segmento somma di AB e CD è ora AD.

Per quanto riguarda il metodo analitico, supponiamo che i segmenti AB e CD abbiano le seguenti lunghezze:

  • AB = 5 cm
  • CD = 3 cm

Il segmento somma si ottiene sommando i valori:

AB + CD = 5 + 3 = 8 cm

Segmento differenza

Per determinare il segmento differenza dei segmenti AB e CD è possibile utilizzare:

  • il metodo grafico, che prevede di tracciare la proiezione ortogonale del secondo punto del segmento minore sul segmento maggiore, misurando poi il segmento che si ottiene;
  • il metodo analitico, che prevede – semplicemente – di sottrarre il valore delle misure dei due segmenti AB e CD.

Rappresentiamo con un disegno il segmento differenza di AB e CD, utilizzando il metodo grafico (proiettiamo ortogonalmente il punto D sul segmento AB, chiamandolo punto E):Il segmento differenza di AB e CD è EB.

Ricordando le misure di AB e CD, rispettivamente 5 cm e 3 cm, il segmento differenza si ottiene, analiticamente, sottraendo i valori:

AB – CD = 5 – 3 = 2 cm

Guarda la videolezione sul canale YouTube matematicaoggi!


Vai alla pagina sugli esercizi su segmento somma e segmento differenza!


Vai alle altre lezioni di geometria!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Differenza di due segmenti e loro rapporto

Differenza di due segmenti e loro rapporto: ecco la lezione che ti aiuterà a svolgere questo tipo di problema geometrico!

La differenza di due segmenti è 8 cm e uno è i \frac{4}{3} dell’altro. Qual è la misura dei due segmenti?

Questo è un classico problema nel quale è presente la differenza delle misure dei due segmenti e il loro rapporto, spesso rappresentato come una frazione.

Traducendo in simboli il problema sopra citato, potremmo scrivere:

  • n1 – n2 = 8 – cioè la differenza delle misure dei due segmenti
  • n1 = \frac{4}{3} n– cioè il rapporto tra i due segmenti

n1 e n2 rappresentano i due segmenti incogniti.

Per determinare la misura dei due segmenti sono possibili due strade:

  1. Utilizzando la proprietà dello scomporre delle proporzioni
  2. Facendosi aiutare dalla geometria, rappresentando il problema proprio con due segmenti

Proprietà dello scomporre delle proporzioni

Sapendo che il rapporto tra n1 e n2 è \frac{4}{3}, possiamo impostare la proporzione nel modo seguente:

n1 : n2 = 4 : 3

In più, sappiamo che n1 – n2 = 8. Possiamo, quindi, applicare la proprietà dello scomporre scrivendo:

(n1 – n2) : n1 = (4 – 3) : 4

Ora è sufficiente sostituire 8 dentro la parentesi (n1 – n2), ottenendo:

8 : n1 = 1 : 4

Per concludere si può ora facilmente ottenere n1, applicando la proprietà fondamentale delle proporzioni, cioè:

n1 = (8 · 4) : 1 = 32

Di conseguenza, n2 si può ottenere per differenza, cioè:

n2 = 32 – 8 = 24

Geometria: segmenti

Sapendo che il rapporto tra n1 e n2 è \frac{4}{3}, possiamo disegnare due segmenti, uno di lunghezza 4 unità e l’altro di lunghezza 3 unità:

Segmento 4 unità

Segmento 3 unità

Sapendo che n1 – n2 = 8, si può immaginare che la differenza sia rappresentata da un segmento pari a 1 unità, che corrisponde a 8.

Considerando che 1 unità vale 8 e che i segmenti iniziali sono lunghi, rispettivamente, 4 unità e 3 unità, per stabilire la misura dei due segmenti incogniti è sufficiente moltiplicare 8 per le unità di ogni segmento, cioè:

8 · 4 = 32 = n1

8 · 3 = 24 = n2


Se la lezione non ti ha chiarito tutti i dubbi, guarda la videolezione direttamente sul canale YouTube matematicaoggi!


Vai alla pagina degli esercizi su differenza di due segmenti e loro rapporto!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Multipli e sottomultipli di un segmento

Multipli e sottomultipli di un segmento: ecco la lezione che ti chiarirà ogni dubbio!

  1. Un segmento misura 10 cm: quanto misura il suo doppio? E il suo triplo?
  2. Sapendo che la lunghezza di un segmento è 24 cm, qual è la lunghezza del segmento che equivale alla sua metà? Qual è il segmento equivalente alla sua quarta parte?

I problemi sopra proposti sono due esempi che riguardano il multiplo di un segmento (problema nr. 1) e il sottomultiplo di un segmento (problema nr. 2).

Il problema nr. 1 riguarda il multiplo di un segmento perché, partendo da un segmento iniziale, si chiede di trovare il suo doppio (significa due volte il segmento iniziale) e il suo triplo (cioè tre volte il segmento iniziale).

Il problema nr. 2 riguarda, invece, il sottomultiplo di un segmento perché, sapendo la misura del segmento iniziale, viene chiesto di trovare la sua metà (significa, semplicemente, dividere per 2 la misura del segmento iniziale) e la sua quarta parte (cioè trovare quanto misura \frac{1}{4} del segmento iniziale).

Risolviamo i due problemi sopra proposti.

Esempio 1

Un segmento misura 10 cm: quanto misura il suo doppio? E il suo triplo?

Come detto, il doppio del segmento significa “due volte” il segmento iniziale, cioè:

10 cm · 2 = 20 cm (doppio)

Il triplo del segmento iniziale significa “tre volte” il segmento iniziale, quindi:

10 cm · 3 = 30 cm (triplo)

Esempio 2

Sapendo che la lunghezza di un segmento è 24 cm, qual è la lunghezza del segmento che equivale alla sua metà? Qual è il segmento equivalente alla sua quarta parte?

La metà del segmento iniziale si ottiene dividendo la misura per 2 (oppure moltiplicando per \frac{1}{2}), cioè:

24 cm : 2 = 12 cm (metà)

La quarta parte si ottiene dividendo per 4 la misura del segmento iniziale (oppure moltiplicando per \frac{1}{4}), quindi:

24 cm : 4 = 6 cm (quarta parte)

In sintesi, riportiamo una tabella-guida utile per risolvere i problemi con multipli e sottomultipli di un segmento.

Multipli di un segmento

Cosa chiede il problema? Qual è l’operazione da compiere sul segmento iniziale?
Il doppio del segmento Si moltiplica per 2

AB = 3 cm

Doppio di AB → 3 cm · 2 = 6 cm

Il triplo del segmento Si moltiplica per 3

CD = 7 cm

Triplo di CD → 7 cm · 3 = 21 cm

Il quadruplo del segmento Si moltiplica per 4

EF = 10 cm

Quadruplo di EF → 10 cm · 4 = 40 cm

Il quintuplo del segmento Si moltiplica per 5

GH = 6 cm

Quintuplo di GH → 6 cm · 5 = 30 cm

Sottomultipli di un segmento

Cosa chiede il problema? Qual è l’operazione da compiere sul segmento iniziale?
La metà del segmento Si divide per 2 o si moltiplica per \frac{1}{2}

AB = 4 cm

Metà di AB → 4 cm : 2 = 2 cm

La terza parte del segmento Si divide per 3 o si moltiplica per \frac{1}{3}

CD = 15 cm

Terza parte di CD → 15 cm : 3 = 5 cm

La quarta parte del segmento Si divide per 4 o si moltiplica per \frac{1}{4}

EF = 24 cm

Quarta parte di EF → 24 cm : 4 = 6 cm

La quinta parte del segmento Si divide per 5 o si moltiplica per \frac{1}{5}

GH = 60 cm

Quinta parte di GH → 60 cm : 5 = 12 cm

Se quanto hai letto non ti è chiaro, guarda la videolezione direttamente dal canale YouTube matematicaoggi!

Vai alla pagina degli esercizi su multipli e sottomultipli di un segmento!


Sei un insegnante? Dai un’occhiata a Didatticaoggi: un progetto per chi vive l’avventura dell’insegnamento!

Somma di due segmenti e loro rapporto

Somma di due segmenti e loro rapporto: ecco la lezione che ti aiuterà a svolgere questo tipo di problema geometrico!

La somma di due segmenti è 35 cm e uno è i \frac{3}{4} dell’altro. Qual è la misura dei due segmenti?

Questo è un classico problema nel quale è presente la somma delle misure dei due segmenti e il loro rapporto, spesso rappresentato come una frazione.

Traducendo in simboli il problema sopra citato, potremmo scrivere:

  • n1 + n2 = 35 – cioè la somma delle misure dei due segmenti
  • n1\frac{3}{4} n– cioè il rapporto tra i due segmenti

n1 e n2 rappresentano i due segmenti incogniti.

Per determinare la misura dei due segmenti sono possibili due strade:

  1. Utilizzando la proprietà del comporre delle proporzioni
  2. Facendosi aiutare dalla geometria, rappresentando il problema proprio con due segmenti

Proprietà del comporre delle proporzioni

Sapendo che il rapporto tra n1 e n2 è \frac{3}{4}, possiamo impostare la proporzione nel modo seguente:

n1 : n2 = 3 : 4

In più, sappiamo che n1 + n2 = 35. Possiamo, quindi, applicare la proprietà del comporre scrivendo:

(n1 + n2) : n1 = (3 + 4) : 3

Ora è sufficiente sostituire 35 dentro la parentesi (n1 + n2), ottenendo:

35 : n1 = 7 : 3

Per concludere si può ora facilmente ottenere n1, applicando la proprietà fondamentale delle proporzioni, cioè:

n1 = (35 · 3) : 7 = 15

Di conseguenza, n2 si può ottenere per differenza, cioè:

n2 = 35 – 15 = 20

Geometria: segmenti

Sapendo che il rapporto tra n1 e n2 è \frac{3}{4}, possiamo disegnare due segmenti, uno di lunghezza 3 unità e l’altro di lunghezza 4 unità:

Segmento 3 unità

Segmento 4 unità

Sapendo che n1 + n2 = 35, si può disegnare il segmento somma dei due segmenti iniziali, ottenendo:

Segmento 7 unità

Come si può notare nel disegno sopra riportato, il segmento somma è formato da 7 unità, che corrispondono alla somma dei due segmenti incogniti.

Per determinare quanto vale 1 unità del segmento è sufficiente eseguire una semplice divisione, cioè:

35 : 7 = 5

Sapendo che 1 unità vale 5 e che i segmenti iniziali sono lunghi, rispettivamente, 3 unità e 4 unità, per stabilire la misura dei due segmenti incogniti è sufficiente moltiplicare 5 per le unità di ogni segmento, cioè:

5 · 3 = 15 = n1

5 · 4 = 20 = n2

Se hai ancora qualche dubbio, ti invito a guardare la videolezione direttamente sul canale YouTube matematicaoggi!


Vai alla pagina degli esercizi su somma di due segmenti e loro rapporto!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Somma e differenza di due segmenti

Somma e differenza di due segmenti: cosa significa?

La somma delle misure di due segmenti è 20 cm e la loro differenza è 10 cm. Qual è la misura dei due segmenti?

Questo è un classico problema di geometria nel quale viene chiesto di calcolare la misura di due segmenti, conoscendo la loro somma e la loro differenza.

In generale, per svolgere questo tipo di problema, si può applicare la regola generale dei problemi con somma e differenza di due numeri.

Supponiamo che i due segmenti siano a e b. Esprimiamo sotto forma di addizione e di sottrazione i dati del problema:

S = a + b
D = ab
con b < a

Come si trova la lunghezza dei due segmenti?

Ecco le due formule risolutive:

somma e differnza di due numeri_2

somma e differnza di due numeri_1

Disegniamo i due segmenti a e b:

somma e differenza di due numeri_3

Rappresentiamo la loro somma (un segmento adiacente all’altro) e la loro differenza (segmento tratteggiato in verde).

somma e differenza di due numeri_4

Proiettiamo il segmento che rappresenta la sottrazione (ab) in basso nel segmento che rappresenta l’addizione (a + b): in questo modo troviamo due segmenti uguali, che corrispondono a due volte il segmento b.

Dividendo per due, troviamo il valore di b. Ciò è rappresentato nella figura seguente.

somma e differenza di due numeri_5

In modo analogo, se dal segmento somma aggiungiamo il valore della differenza (parte tratteggiata) troviamo due segmenti uguali, che corrispondono a due volte il segmento a.

Dividendo per due, troviamo la misura del segmento a. Ciò è rappresentato nella figura seguente.

somma e differenza di due numeri_6

In sintesi, quando abbiamo la somma e la differenza di due segmenti a e b, per trovarne la misura applichiamo queste due semplici formule:

somma e differnza di due numeri_2

somma e differnza di due numeri_1

Riprendiamo il problema proposto inizialmente:

La somma delle misure di due segmenti è 20 cm e la loro differenza è 10 cm. Qual è la misura dei due segmenti?

Secondo quanto esposto poco sopra, per trovare la misura dei due segmenti è sufficiente svolgere le due operazioni seguenti:

a=\frac{20+10}{2}=\frac{30}{2}=15cm

b=\frac{20-10}{2}=\frac{10}{2}=5cm

I due segmenti misurano rispettivamente 15 cm e 5 cm (se sommiamo le loro misure otteniamo effettivamente 20 cm, mentre se eseguiamo la sottrazione otteniamo 10 cm).


Guarda la videolezione (canale YouTube matematicaoggi)


Vai alla pagina degli esercizi!

Esercizi sugli enti geometrici

In questa pagina puoi trovare una ricca raccolta di esercizi sugli enti geometrici, con diversi livelli di difficoltà e un collegamento diretto ad alcune videolezioni.




Se questi esercizi sugli enti geometrici ti hanno aiutato, svolgi gli altri esercizi di geometria!


Vai alle altre lezioni di geometria!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!