Somma di due segmenti e loro rapporto

Somma di due segmenti e loro rapporto: ecco la lezione che ti aiuterà a svolgere questo tipo di problema geometrico!

La somma di due segmenti è 35 cm e uno è i \frac{3}{4} dell’altro. Qual è la misura dei due segmenti?

Questo è un classico problema nel quale è presente la somma delle misure dei due segmenti e il loro rapporto, spesso rappresentato come una frazione.

Traducendo in simboli il problema sopra citato, potremmo scrivere:

  • n1 + n2 = 35 – cioè la somma delle misure dei due segmenti
  • n1\frac{3}{4} n– cioè il rapporto tra i due segmenti

n1 e n2 rappresentano i due segmenti incogniti.

Per determinare la misura dei due segmenti sono possibili due strade:

  1. Utilizzando la proprietà del comporre delle proporzioni
  2. Facendosi aiutare dalla geometria, rappresentando il problema proprio con due segmenti

Proprietà del comporre delle proporzioni

Sapendo che il rapporto tra n1 e n2 è \frac{3}{4}, possiamo impostare la proporzione nel modo seguente:

n1 : n2 = 3 : 4

In più, sappiamo che n1 + n2 = 35. Possiamo, quindi, applicare la proprietà del comporre scrivendo:

(n1 + n2) : n1 = (3 + 4) : 3

Ora è sufficiente sostituire 35 dentro la parentesi (n1 + n2), ottenendo:

35 : n1 = 7 : 3

Per concludere si può ora facilmente ottenere n1, applicando la proprietà fondamentale delle proporzioni, cioè:

n1 = (35 · 3) : 7 = 15

Di conseguenza, n2 si può ottenere per differenza, cioè:

n2 = 35 – 15 = 20

Geometria: segmenti

Sapendo che il rapporto tra n1 e n2 è \frac{3}{4}, possiamo disegnare due segmenti, uno di lunghezza 3 unità e l’altro di lunghezza 4 unità:

Segmento 3 unità

Segmento 4 unità

Sapendo che n1 + n2 = 35, si può disegnare il segmento somma dei due segmenti iniziali, ottenendo:

Segmento 7 unità

Come si può notare nel disegno sopra riportato, il segmento somma è formato da 7 unità, che corrispondono alla somma dei due segmenti incogniti.

Per determinare quanto vale 1 unità del segmento è sufficiente eseguire una semplice divisione, cioè:

35 : 7 = 5

Sapendo che 1 unità vale 5 e che i segmenti iniziali sono lunghi, rispettivamente, 3 unità e 4 unità, per stabilire la misura dei due segmenti incogniti è sufficiente moltiplicare 5 per le unità di ogni segmento, cioè:

5 · 3 = 15 = n1

5 · 4 = 20 = n2

Se hai ancora qualche dubbio, ti invito a guardare la videolezione direttamente sul canale YouTube matematicaoggi!


Vai alla pagina degli esercizi su somma di due segmenti e loro rapporto!


Sei un insegnante o, semplicemente, ti incuriosisce il mondo della didattica in generale? Ecco un progetto molto interessante, parallelo a matematicaoggi, dedicato alla didattica: didatticaoggi! Riflessioni, esperienze didattiche e molto altro!

Seguici e condividi!