Radice di una frazione

La radice di una frazione è un’operazione molto particolare che richiede attenzione.

In generale, la radice è l’opposto della potenza; per esempio:

2^4=16\to\sqrt[4]{16}=2

In questa lezione vedremo come si calcola la radice di una frazione.

In generale, vale la regola seguente:

\sqrt[a]{\frac{N}{D}}= \frac{\sqrt[a]{N}}{\sqrt[a]{D}}

Concretamente, la radice di una frazione con indice a si calcola applicando la radice sia al numeratore che al denominatore.

Presentiamo alcuni esempi per chiarire maggiormente questa regola. Se preferisci, a fondo pagina, puoi trovare un’utilissima videolezione!

Esempio 1

\sqrt[]{\frac{16}{25}}

In questo esempio è presente una radice quadrata (cioè con indice 2). Per svolgere questa operazione è sufficiente applicare la radice quadrata sia al numeratore che al denominatore della frazione, come di seguito presentato:

\sqrt[]{\frac{16}{25}}= \frac{\sqrt[]{16}}{\sqrt[]{25}} =\frac{4}{5}

Per verificare che il risultato ottenuto è corretto, è sufficiente applicare l’operazione inversa alla radice, cioè la potenza. Considerando che l’opposto della radice quadrata è la potenza alla seconda (o, al quadrato), avremo:

\frac{4^2}{5^2}=\frac{16}{25}

Esempio 2

\sqrt[3]{\frac{8}{125}}

In questo esempio è presente una radice con indice 3 (cioè una radice cubica). Per svolgere questa operazione è sufficiente applicare la radice cubica sia al numeratore che al denominatore della frazione, come di seguito presentato:

\sqrt[3]{\frac{8}{125}}= \frac{\sqrt[3]{8}}{\sqrt[3]{125}} =\frac{2}{5}

Per verificare che il risultato ottenuto è corretto, è sufficiente applicare l’operazione inversa alla radice, cioè la potenza. Considerando che l’opposto della radice cubica è la potenza alla terza (o, al cubo), avremo:

\frac{2^3}{5^3}=\frac{8}{125}

Esempio 3

\sqrt[]{1+\sqrt[]{\frac{49}{81}}}

In questo esempio è presente una doppia radice. Per svolgere questa operazione è necessario, innanzitutto, svolgere la radice interna; successivamente – quando tutte le operazioni sono state svolte e si ha un solo termine – si può risolvere la seconda radice.

Si precede, quindi, calcolando la prima radice (applicando la radice quadrata sia al numeratore che al denominatore), ottenendo:

\sqrt[]{1+\frac{7}{9}}}

Ora non resta che svolgere l’addizione, applicando le regole dell’addizione di frazioni, ottenendo così:

\sqrt[]{\frac{16}{9}}}

Applicando la radice quadrata sia al numeratore che al denominatore si ottiene:

\sqrt[]{\frac{16}{9}}= \frac{\sqrt[]{16}}{\sqrt[]{9}} =\frac{4}{3}

Questa che abbiamo appena presentato  non è l’unica operazione che è possibile svolgere con le frazioni.

Se desideri, puoi accedere ad altre lezioni sulle operazioni con le frazioni! In particolare:

E per finire, non perdere una lezione semplice ma efficace sulle espressioni con le frazioni!

Nel canale Youtube matematicaoggi è presente un’interessante playlist con una serie di videolezioni coinvolgenti, che completano le lezioni sopra elencate.

Seguici e condividi!